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Abstract—Leveraging the integrated sensing and communica-
tion (ISAC) paradigm, wireless networks can provide sensing and
communication services, which are essential for industrial cyber-
physical systems (CPSs). However, non-stationary distributions
of the mobile ISAC devices and sensing targets in industrial
environments make the service provision challenging. In this
paper, we propose a digital twin (DT)-based resource reservation
scheme for ISAC in CPSs, aiming at satisfying service demands
with minimal reserved network resources. Particularly, we first
design a DT-based spatial distribution modeling approach that
adaptively synergizes multiple candidate spatial models to tackle
the challenge of non-stationary distributions. We then develop
a location-based resource-efficient approach to collaborative
sensing, reserving shared spectrum resources for ISAC devices to
track sensing targets in their close proximity. Finally, we derive
closed-form formulas for efficiently obtaining candidate resource
reservation decisions, and propose a DT-based network emulation
approach to evaluate the candidate decisions and select the
optimal one. Numerical results show that the proposed DT-based
resource reservation scheme can increase service satisfaction ratio
by up to 18% and reduce resource consumption by up to 11.5%
compared with benchmark schemes.

Index Terms—Digital twin, integrated sensing and communi-
cation, proactive resource management, industrial cyber-physical
systems.

I. INTRODUCTION

Sensing and communication are essential functions that
support real-time monitoring and control in industrial cyber-
physical systems (CPSs) [2], [3]. Recent advancements in
wireless networks, such as the exploitation of large-scale
antenna arrays, higher frequency bands, and networked com-
puting, have catalyzed the transformative integrated sensing
and communication (ISAC) paradigm [4]. In this paradigm,
wireless network infrastructures and end devices can perform
both communication and environmental sensing functions.
ISAC can enhance resource utilization efficiency in CPSs
through resource sharing. In addition, ISAC can improve
sensing signal propagation in adverse weather conditions [5],
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enhance sensing signal processing through networked comput-
ing [6], and increase communication efficiency by leveraging
environment knowledge [7].

Providing satisfactory sensing services along with existing
communication services by a wireless network requires effi-
cient management and utilization of network resources. The
radio access network (RAN) slicing-based resource manage-
ment framework can be used to isolate and better support the
provision of the communication and the sensing services [8].
In addition, ISAC access points (APs) and devices in a wireless
network should collaborate efficiently while exploiting their
unique strengths in sensing [5]. In particular, ISAC devices,
e.g., mobile robots, usually have closer proximity to the
targets, e.g., human workers, which results in lower required
sensing signal power and a higher potential for spatial reuse of
spectrum resources. In contrast, ISAC APs, hereafter referred
to as APs, typically have larger antenna arrays and more
computing resources for sensing data processing.

Information on the spatial distributions of mobile ISAC
devices and targets is crucial for resource management for
ISAC in a CPS. First, the spatial distributions of ISAC
devices and targets reflect the sensing and communication
service demands. Second, the distances between the targets
and the ISAC devices, as well as that between the targets
and the APs, determine the association of targets with them.
Third, the spatial distribution of ISAC devices determines the
interference level if they reuse the same spectrum band for
sensing [9], [10]. A statistical model to characterize the spatial
distributions, referred to as a spatial model, is necessary for
proactive resource management, i.e., large-timescale resource
reservation in RAN slicing [11]. Obtaining such a spatial
model, referred to as spatial modeling, is challenging due to
the potentially non-stationary spatial distributions in industrial
environments [12]. For example, the safe separation distances
between robots and human workers may change dynamically
based on factors such as human and robot velocities [13] and
specific task requirements [14].

Most works on spatial modeling-based resource manage-
ment for ISAC, e.g., [9], [15]-[20], rely on a temporally
stationary spatial model with constant and known model
parameters. Nevertheless, in the presence of the temporal non-
stationarity, relying on a single spatial model is susceptible to
model drift, i.e., degradation of model accuracy due to changes
in data distribution over time [21], and potentially compro-
mises the effectiveness of resource reservation decisions. As
a result, adaptive spatial modeling and accurate evaluation of
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resource reservation decisions derived based on the modeling
are necessary. To achieve this goal, the digital twin (DT)
paradigm, an emerging paradigm for network virtualization
and management [22], can be exploited. In particular, DTs
of network slices can be established as digital representations
of the network slices to collect and process the data from
the corresponding slices, e.g., data pertaining to the service
demand, and generate slice-level management decisions [23],
[24]. In addition, based on the collected data, simulation
environments can be established for evaluating resource man-
agement decisions [25], [26].

In this paper, we propose a novel DT-based resource reser-
vation scheme for ISAC in an industrial CPS. Our objective
is to reserve the minimum spectrum and edge computing
resources for the network slices of sensing and communication
while satisfying the service demands in the CPS. To achieve
this objective, we establish DTs of the network slices, where
spatial modeling and network slice instances are obtained by
collecting and processing the location data of ISAC devices
and targets. In the spatial modeling, we exploit multiple
point process-based spatial models to tackle the model drift
in predicting the parameters in individual spatial models.
Leveraging the network slice instances, we propose a network
emulation approach to evaluate candidate resource reservation
decisions given different spatial models and select the optimal
one. Numerical results demonstrate that the proposed scheme
can enhance service demand satisfaction and reduce resource
consumption compared with benchmark schemes. The contri-
butions of this paper are summarized as follows.

1) We design a DT-based spatial modeling approach for
industrial CPSs that monitors the drift in multiple point
process-based spatial models, and tackles the model drift
by the update and ensemble of the spatial models.

2) Leveraging the spatial modeling, we develop a resource-
efficient approach to device-AP collaborative sensing,
where ISAC devices reuse spectrum resources to track
targets in their close proximity. In addition, closed-form
formulas for efficiently generating candidate resource
reservation decisions are derived.

3) The proposed DT-based network emulation enables the
synergy of multiple spatial models for resource reser-
vation, by efficiently and accurately evaluating and se-
lecting from the candidate resource reservation decisions
given each of the spatial models.

The remainder of this paper is organized as follows. In
Section II, we review the related works. In Section III,
we present the system model and formulate the resource
reservation problem. The DTs of network slices for adaptive
spatial modeling are introduced in Section IV. The resource
reservation scheme based on the slice DTs is detailed in
Section V. Simulation results are provided in Section VI,
followed by the conclusion of this paper in Section VII.

II. RELATED WORKS
A. Resource Management for ISAC

To implement the ISAC paradigm, there are primarily
two kinds of approaches: unified waveform design and non-

overlapping resource allocation [27], [28]. In the unified
waveform design approach, the sensing and communication
functions are implemented via a single signal waveform. This
approach may achieve a high spectrum and energy efficiency,
but introduces high complexity for real-time waveform op-
timization [27]. In the non-overlapping resource allocation
approach, spectrum resources are individually allocated, in
the time, frequency, and beam domains, to transmit sensing
and communication signals. Although the resource utilization
efficiency may be lower, this approach is simpler to implement
and thus receive considerable attention [27]-[32].

To capture service demands and effectively manage re-
sources for ISAC, information on the spatial distributions of
sensing nodes and targets is crucial [28]. In particular, prior
information on the real-time locations of sensing nodes and
targets facilitate real-time resource management, e.g., beam
management [33], power control [31]-[33], and spectrum
allocation [31], [32]. For proactive resource management,
i.e., resource reservation [11], [23], it is crucial to employ
spatial modeling of sensing nodes and targets to capture the
randomness of their locations during a reservation window.
Point processes that are temporally stationary, i.e., those with
constant parameters over time, are commonly used [34]. Then,
the formulas for estimating spatially averaged sensing and
communication performances, e.g., target detection probability
and ergodic transmission rate, can be derived, accordingly [9],
[19], [20]. The performance estimation formulas are then
utilized to make resource reservation decisions, e.g., time allo-
cation in time-division-based ISAC systems [15], the density
of APs [16], [17], and the clustering of APs for interference
management in multi-cell dense wireless networks [18].

Different from the existing works, we investigate the spatial
modeling in temporally non-stationary environments within
industrial CPSs. We develop adaptive update and synergy
of multiple temporally non-stationary point processes in the
spatial modeling and resource reservation for ISAC.

B. DT-Assisted Resource Management

The DT paradigm was recently proposed to support resource
management in wireless networks [22]. A DT involves a
digital representation of a physical object and the synchro-
nization between them. Existing works establish DTs of users
and network slices to capture their real-time or statistical
characteristics, e.g., user swiping behaviour in short video
streaming [24], user mobility pattern in mobile edge com-
puting applications [23], sensing devices’ data quality in col-
laborative sensing [35], user-AP link quality in heterogenous
networks [36], and end-to-end delay in network slices [37].
In addition, DTs are used for network emulation to augment
the training data of data-driven resource management schemes
in [26]. Another important research issue is addressing the
challenges in establishing DTs. To obtain sufficient data about
users, user location data is collected in [38], and generative
Artificial Intelligence is used for generating user trajectory
data [25]. To enhance resource efficiency, the selection of data
attributes and data processing methods for the establishment
of DTs are investigated in [36] and [39], respectively.
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Fig. 1: Architecture of the industrial CPS.
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Fig. 2: An illustrative example of timescales, where an ISAC device
is associated with three targets at the beginning of the sensing frame.

Different from the existing works, to cope with the temporal
non-stationarity, we explore how DTs of network slices can be
adaptively configured to output an appropriate spatial model
to reserve resources for ISAC in industrial CPSs. In addition,
we investigate how the DTs can be used in network emulation
to evaluate candidate resource reservation decisions.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Architecture

We consider an industrial CPS, which is illustrated in Fig. 1.
In the physical space of the industrial CPS, we consider an
industrial zone where a cluster of L APs is deployed. The APs
cover non-overlapping areas to provide sensing and communi-
cation services. Each area is a hexagon with a side length r
and an area of Ao = 3v/3r2/2. Each AP coordinates a mobile
edge computing (MEC) server. In addition, in the coverage of
each AP, there are mobile robots as ISAC devices with sensing,
communication, and computing capabilities, and human work-
ers as targets. To enhance workspace safety and efficiency,
sensing services are required for the targets in the Rol, as a
circle with radius f), of each ISAC device. Each AP searches
for the targets that newly arrive within the Rols in its coverage.
In addition, to improve resource utilization efficiency, each AP
collaborates with the ISAC devices in its coverage, that adopt
a time-division ISAC scheme [29], [30], to track the state of
the targets including the location, velocity, and activity.

In the cyber space of the industrial CPS, distributed local
controllers at each AP and a centralized global controller
at the remote cloud aggregate and process data from the

physical space, and generate control decisions to be imple-
mented. We specifically focus on the controllers’ role in
managing the spectrum and edge computing resources in
wireless networks for providing sensing and communication
services. To efficiently guarantee their respective quality of
service, RAN slicing-based resource management framework
is adopted. Particularly, two network slices are established
to provide sensing and communication services, respectively.
The management of the network slices involves making deci-
sions across three different timescales by the controllers. As
shown in Fig. 2, the timescales include reservation windows
(indexed by k € {1,2,3,..., K}), sensing frames (indexed by
m € {1,2,3,..., M}), and time slots, arranged in descending
order of their durations. Specifically, each reservation window
consists of M frames; each frame consists of 7' slots; and
each slot is 7 seconds in length. The three types of network
management decisions corresponding to the three timescales
are summarized as follows.

o At the beginning of each reservation window, the global
controller reserves spectrum and edge computing re-
sources for the slices, respectively.

« At the beginning of each sensing frame, for updating the
status of each individual target in the Rol of each ISAC
device, the local controller at the corresponding AP asso-
ciates the target with either the AP or the ISAC device.

o At the beginning of each time slot, each ISAC device in
the coverage of an AP is scheduled by the local controller
at the AP to perform either sensing or communication
throughout the time slot.

In this paper, we focus on proactive resource management
for ISAC in the industrial CPS, i.e., the resource reservation
made by the global controller for the sensing and commu-
nication slices at the beginning of each reservation window.
To make such decisions, the spatial distributions of ISAC
devices and targets, that are dynamic in each reservation
window due to their mobility, need to be characterized. As
shown in Fig. 1, the global controller aggregates the location
data of ISAC devices and targets in each network slice to
establish DTs of the network slices. The DTs are used to
achieve adaptive spatial modeling and network emulation, to
be detailed in Section IV. A resource reservation module in the
global controller leverages the DTs for making the resource
reservation decision, to be detailed in Section V.

B. Communication Model

The global controller reserves X2 € Zs, subcarriers for
the uplink communication of the ISAC devices in the coverage
of each AP. The total amount of spectrum resources reserved
for the uplink communication in the coverage of the L APs
is thus Z» = L- X2 - B, where B, is the bandwidth of
each subcarrier in Hertz. We consider the scenario where there
exists at least one ISAC device in the coverage of each AP.
Consider the homogeneity among different ISAC devices and
APs, respectively. We focus on one representative ISAC device
and one representative AP when deriving the service demands
and capacities, and refer to them as the ISAC device and the
AP, respectively. The number of ISAC devices in the coverage



of the AP is denoted by N'. At the beginning of each time
slot, with an active probability p. € (0, 1], each ISAC device
in the coverage of each AP is scheduled by the local controller
at the AP for uplink communication. The number of all ISAC
devices that are scheduled for communication in the time slot
is denoted by N/. Conditioning on that N! = n and the ISAC
device is scheduled for uplink communication, the probability
mass function (PMF) of N! is

PV =N =n} = (" T D)ot g0 )
where n, = 1,2,3,...,n, and n = 1,2,.... As a result, we
have E [N{| N'] = 14 (N —1)p,. The subcarriers are evenly
allocated to the ISAC devices scheduled for communication,
and the number of the subcarriers allocated to the ISAC device
is X! = XA/NL
Proposition 1: Denote the transmission rate over each subcar-
rier (in bits per time slot) by Ry and the uplink transmission
of the ISAC device by R. A lower bound of the expectation of
transmission rate R is

— RoXA
R=p- = . 2
b THEINT — Dpe @
Proof: Please refer to Appendix A. |

The lower bound in (2), ie., R, corresponds to the com-
munication service capacity. The average amount of data that
each ISAC device needs to upload per time slot, denoted by
R, corresponds to the communication service demand.

C. Sensing Model

We consider two kinds of sensing tasks. The first kind is
the target searching task. Particularly, in each sensing frame,
the AP searches for the targets that newly arrive at the Rols of
the ISAC devices in its coverage. At the end of each sensing
frame, based on the search results, the local controller at the
AP updates a database that catalogs the targets within the Rols
of the ISAC devices in its coverage. The second kind is the
target tracking task. In particular, within a sensing frame, a
target from the database is associated with either an ISAC
device or the AP for monitoring across multiple time slots.
At the end of each of the time slots, a sensing data sample
is collected for the target. At the end of the frame, the ac-
cumulated sensing data samples for each target are processed
to determine the state of the target. The tracking results are
recorded in the target database, providing prior information to
facilitate target tracking in subsequent sensing frames.

1) Target Searching and Tracking by APs: The AP per-
forms digital beamforming to simultaneously form multiple
beams. To avoid the inter-beam interference, different beams
are allocated with orthogonal sensing spectrum bands [31],
[32], each having the bandwidth B; . For the AP, a constant
number of X A spectrum bands are reserved to form X A search
beams to search for targets that newly arrive at the Rols of
ISAC devices in each sensing frame [40]. In addition, XSA
spectrum bands are reserved for each AP to form X2 € Z>
track beams, each of which can be used to track one associated
target [31], [40]. The total amount of spectrum resources

reserved for target searching and tracking by the L APs,
denoted by Z2,is ZA = L- (X2 + X2) - By .

2) Target Tracking by ISAC Devices: For tracking the
targets by the ISAC devices in the coverage of the L APs,
the global controller reserves X! € Zs>q spectrum bands,
each having bandwidth B . As a result, the total amount of
spectrum resources reserved for target tracking by all the ISAC
devices is Z! = X! B . At the beginning of a time slot,
an ISAC device will enter the sensing mode if not scheduled
by the local controller for communication, the probability of
which is 1 — p.. Similar to [10], in each time slot, the ISAC
device in the sensing mode randomly chooses one of the X
reserved spectrum bands with equal probability 1/X], and
forms a track beam towards one associated target [30].

We consider the following beam pattern of ISAC devices
in the sensing mode. The width of the beam is ¢;, and
the antenna gain is Gy, = Go27/¢y in the beam, and zero
elsewhere [41]. The power of the signal reflected from a target
received at the ISAC device, denoted by P, can be calculated
by P. = P.G2c*5/(4m)3 f2D* [9], where P represents the
transmit power of sensing signals; c represents the speed of
light; & represents the average value of radar cross section
(RCS) of the target; fs represents the centre frequency of the
accessed spectrum band; D represents the distance between the
ISAC device and the target. The ISAC device in the sensing
mode will receive the interference from any other ISAC device
that is also in the sensing mode, accessing the same spectrum
band for sensing, and residing within each other’s beams. For
tractability, we consider only the strongest interfering signal
to the ISAC device, which is the signal from the nearest ISAC
device. The power of the interference signal is denoted by I,
and the signal-to-interference ratio (SIR) is denoted by 5 and
calculated as 5 = Pe/I.

3) Sensing Data Processing: At the end of each sensing
frame, the accumulated sensing data samples for each tar-
get need to be processed by methods including parameter
estimation [27] and pattern recognition [26] to extract the
motion state of the target. The total computational overhead
for processing the sensing data of one target is denoted by Cy
in CPU cycles. The constant computational capability of each
ISAC device in CPU cycles per second is denoted by F.. For
processing the sensing data collected by each AP, the amount
of reserved edge computing resources at the AP is denoted by
F2. The total amount of edge computing resources reserved
for the L APs is Z» = L - FA. The delay in processing
the sensing data collected by the ISAC device and the AP
within a sensing frame, denoted by T\ and T*, respectively,
is calculated as T) = NVC,/F., and T® = NYCo/FA.
Here, Ny and N represent the numbers of targets that are
associated with the AP and the ISAC device at the beginning
of a sensing frame.

4) Sensing Requirements: Multi-dimensional requirements,
including the quality, quantity, and processing delay of sensing
data, are considered for the sensing service.

First, to successfully extract the information of a target from
the sensing data samples, the SIR should be greater than a
threshold 7;. Consider the randomness in the SIR across dif-
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ferent sensing data samples, we adopt the following constraint
on the quality of sensing data [20]: P{v, > J,} > P.

Second, to obtain sufficient sensing data samples about
each target, the number of time slots assigned to track the
target in a sensing frame must exceed a threshold. We denote
the threshold on the average number of times each target is
tracked per time slot by ps € (0,1] [29]. In each time slot,
the expected number of track attempts that are conducted by
the ISAC device is 1 — p, times, and that by the AP is X2
times. As a result, the expected numbers of targets associated
with the ISAC device and that associated with the AP should
respectively satisfy the two following constraints:

A
ass )

S

E[NY] < 225 BVY <

~

Third, to guarantee the freshness of sensing results, the
expected sensing data processing delay at the ISAC device
and the AP, i.e., E [T!] and E [T2], should be less than the
duration of a sensing frame, or equivalently, 7" time slots:

E [NY] Cy E[NY] Cy
E[N ] Co z;el] <7T; E[N:] Co FAA] <rT. @)

5) Sensing Region Division-Based Target Association:
With an increasing distance between an ISAC device and
a target, the power of the received sensing signal from the
target decreases, which leads to a higher chance of violating
the SIR requirement. To this end, as shown in Fig. 3, we
draw a concentric inner circle with radius DLY in the Rol
of each ISAC device and define it as the on-device sensing
region. A target will be associated with the ISAC device only
if it is (i) in the on-device sensing region of the ISAC device
and (ii) nearest to the ISAC device than to any other ISAC
devices. By properly determining the radius of the on-device
sensing region, the SIR requirement can be satisfied. With
such association, the expected number of targets that can be
associated with the ISAC device should satisfy the constraint:

E[N{] <P{D"“VU <Dy} -E[N}], (5)

max

where DVU represents the distance between a target to its
closest ISAC device; P{DVV < DLU } is the probability that
the distance is smaller than the radius of the on-device sensing
region; E [N;] is the expected number of targets that are
closer to the ISAC device than to any other ISAC devices.

6) Sensing Service Demand and Capacity: The number of
the targets in the Rols in the coverage of the AP is denoted by
NU. The expectation of NV corresponds to the sensing service
demand in the coverage of the AP. The demand is calculated
by multiplying the expected number of ISAC devices with that
of the targets within the Rol for each ISAC device:

E[N]=E[N']- (P{D'V < D}-E[NI]), (6

where P{DYV < D} is the probability that the distance
between a target to the closest ISAC device is smaller than
the radius of the Rol of the ISAC device.

Combining the constraint on sensing quantity in (3), the
constraint on sensing data processing delay in (4), and the
constraint due to the maximum number of targets in the on-
device sensing region in (5), we derive the maximum values
of E[N] and E[NY] as

o 1—p. 7T - F!
WY 2 min {0V < D) B ) e, T
’ Ps CO
(7a)
and
—U A . XA TT'FA
N, 2 s © 7b
A mln{ﬁs, Cy ) (7v)

which correspond to the sensing service capacity of each ISAC
device and each AP in the network, respectively.

D. Problem Formulation

Our objective is to satisfy the demands for the sensing and
communication services in the upcoming reservation window
with the minimal resource consumption. To achieve this objec-
tive, a decision ® = {DLYU  p., X2 X1 XA FA} is made,
which consists of the radius of the on-device sensing region,
i.e., DLY | the active probability for uplink communication of
each ISAC device, i.e., p., the amount of reserved spectrum
resources, i.e., X2, X2, and X!, and the amount of reserved
edge computing resources, i.e., F*. An optimization problem

is formulated as follows:

(P1) :min Z=w (Z2+ZL+z22) + €22 (8a)
sit. 0< p. <1, (8b)
X2 X1 X2 € Zs, (8¢)

F} DL Rzoj (8d)

R>R, (8e)

Na+E [N']-Ny >E [NY], (8)

P{y >7:} > P, (82)

where Z is the overall resource consumption; w and £ are the
cost of reserving each unit of spectrum resources and edge
computing resources, respectively; constraint (8e) ensures that
the expected transmission rate of each ISAC device is greater
than a threshold R; constraint (8f) ensures that the expected
number of targets that can be tracked with the requirements
on the sensing data quantity and processing delay satisfied is
greater than the expected number of the targets in all the Rols
in the coverage of the AP; (8g) ensures that the requirement
on sensing data quality evaluated by SIR is satisfied.

Solving Problem (P1) requires the spatial modeling of ISAC
devices and targets. In particular, according to (2), calculating
the communication service capacity, i.e., R, requires the
expected number of ISAC devices in the coverage of each AP,
ie., E[N']; According to (7a), the sensing capacity of each
ISAC device, i.e., N}j, depends on the spatial distributions
of targets; According to (6), the sensing service demand in
the coverage of each AP, i.e., N , depends on the spatial



Data processing

Data input functions Data output
Network slice DT
Simplified modeling
. . Update -
Poisson point MLE | LSTM™ Spatial
process model
Detailed modeling —————> Resource
& Update reservation
luster point module
process MLE | LSTM
Spatial modeling function
Model drift detection and Candidate
adaptation function decision
Network Decision
instances evaluation
Network emulation function
el ISAC device
data .
4 Access point
_"-: : N‘i Sensing target
Global i = ™ > ; Sensing signal
controller; ; I Data upload

Fig. 4: The model of a slice DT.

distributions of the ISAC devices and the targets, respectively;
Moreover, the sensing interference experienced by each ISAC
device, impacting s in (8g), is affected by the spatial distri-
bution of the ISAC devices. However, obtaining an accurate
spatial model of the ISAC devices and targets is challenging.
This is because their stochastic spatial distributions can be
non-stationary in an industrial CPS.

IV. NETWORK SLICE DTS FOR ADAPTIVE SPATIAL
MODELING

The DT of a network slice, hereafter referred to as the
slice DT, is a digital representation of a network slice that
is established and updated by collecting and processing data
from individual users and infrastructures within the network
slice for the service-specific prediction and control [22]. In
this section, we introduce the establishment of the slice DTs
in the CPS, the model of which is illustrated in Fig. 4.

A. Location Data Collection

To establish the slice DTs, each AP collects the location
data of the ISAC devices and targets, and uploads location
data to the global controller every M, sensing frames. The
location data are collected by each AP in the following way.
First, the locations of the targets, that are associated with the
AP for tracking in this frame, are obtained by processing the
reflected sensing signals. Second, the locations of the targets
associated with the ISAC devices and that of the ISAC devices
are obtained and then uploaded by the ISAC devices to the AP.
The location data are used as the input for the slice DTs.

B. Spatial Modeling Function

The collected location data of ISAC devices and targets are
processed to derive the spatial modeling for the next reserva-
tion window, i.e., the (k + 1)-th reservation window, for re-
source reservation. To cope with the potential non-stationarity
of the spatial distributions across reservation windows, in
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Fig. 5: Values of the parameters x5 and o}, in the detailed modeling
across reservation windows.

this paper, temporally non-stationary point processes [42] are
exploited. Specifically, we consider the model parameters are
constant in each reservation window and can change across
reservation windows. To tackle the challenge in predicting the
model parameters, we propose two types of spatial modeling,
i.e., detailed spatial modeling and simplified spatial modeling,
based on two different point processes.

1) Detailed Spatial Modeling: In the detailed spatial model,
the spatial distributions of ISAC devices and targets in the
k-th reservation window are jointly modeled by a Thomas
cluster process. Specifically, the locations of ISAC devices
are modeled by a homogeneous Poisson point process (PPP)
with intensity .. The relative two-dimensional locations of
the targets clustering around each ISAC device follows two
identical and independent normal distributions with zero mean
and standard deviation J}cj [43]. In addition, the number of
targets in the cluster of each ISAC device follows a Poisson
distribution with mean p} . At the end of the k-th reservation
window, using the location data collected in this reservation
window, the model parameters, i.e., AL, oY, and py, are deter-
mined based on the maximum likelihood estimation (MLE).
For predicting the three parameters for resource reservation in
the (k + 1)-th reservation window, denoted by A, o5,
and fiY 1, long short-term memory (LSTM) neural networks
are established in the DT.

The detailed modeling characterizes the probability distribu-
tion of the distances between ISAC devices and targets with
the model parameters ) and o). If the parameters can be
accurately predicted for the upcoming reservation window, the
detailed modeling will be accurate. However, if there is a shift
in the probability distribution of these parameters, referred
to as data drift, the accuracy of parameter prediction and
spatial modeling can degrade, referred to as model drift [21].
To illustrate this, in Fig. 5, we show the ground-truth and
predicted values of the model parameters pp and op in
the detailed modeling, which are derived by MLE and the
LSTM neural networks, respectively. The simulation settings
are detailed in Section VI. It can be observed that after the
201-st reservation window, the ground-truth values of uY and
J}cj exhibit a drastic increase, indicating data drift, while the
predicted values show an increasing gap with the ground-truth
values, indicating model drift.

2) Simplified Spatial Modeling: To cope with the model
drift, a spatial modeling robust to model drift is needed. We
introduce the simplified modeling, which characterizes the
probability distribution of the distances between ISAC devices
and targets in a simplified way. In particular, the locations of
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Fig. 6: Values of the parameters AL, and A} in the simplified modeling
across reservation windows.

the ISAC devices and targets in the k-th reservation window
are modeled by two independent homogeneous PPPs with
intensities AL and AJ, respectively. Similar to the detailed
modeling, using the collected data in the k-th reservation
window, the intensities of the two homogeneous PPPs, i.e.,
A, and A/, are determined based on the MLE. The two
parameters for the (k + 1)-th reservation window, i.e., 5\}6 10
S\EH, are predicted by LSTM networks based on values of
the parameters in the previous K, windows.

In Fig. 6, with the same simulation settings as in Fig. 5,
we show the ground-truth and predicted values of all the
parameters in the simplified modeling, ie., AL and AY. It
can be observed that neither data drift nor model drift occurs.
This observation suggests that the simplified modeling is more
robust to model drift than the detailed modeling. However,
it is important to note that in scenarios without model drift,
the simplified modeling would yield lower accuracy than the
detailed modeling.

C. Model Drift Detection and Adaptation Functions

To ensure the model accuracy, the spatial modeling function
should adapt to data drift and the resulting model drift. To this
end, we design a model drift detection function and a model
adaptation function.

1) Model Drift Detection Function: This function monitors
the prediction errors in the parameters of the spatial models
and detect the model drift. By the end of the k-th time window,
the errors in predicting {\;, AU, u¥, o} are evaluated by the
mean absolute percentage error (MAPE) and calculated. We
determine that a parameter exhibits data drift if all the MAPEs
of the parameter from reservation windows k£ — Ko + 1 to k
exceed the average MAPEs from earlier reservation windows
k— K3+ 1 to k — K, by a threshold é; or more, where
K3 > K. In addition, let HY and HP € {0,1} indicate
whether the simplified modeling and the detailed modeling,
respectively, experience model drift. At the end of the k-th
reservation window, the following three cases are considered
for model drift detection. First, if the parameter AL, which is
shared by both modelings, exhibits data drift, we set HY =
and Hp = 1. Second, if the parameter A, which is unique
to the simplified modeling, exhibits data drift, we set H ,f =
1. Third, if parameters Y and o}, which are unique to the
detailed modeling, exhibit data drift, we set H,? =1.

2) Model Drift Adaptation Function: In this function, the
following two approaches are designed to adapt to any model
drift that is detected. (i) Model Update: When model drift is
detected, LSTM neural networks for predicting the parameters

corresponding to the model drift are updated. In particular,
in the reservation windows after the detection, the ground-
truth values of the parameters will be collected and used
to retrain the neural networks. (ii) Model Ensemble: When
model drift is detected, the ensemble learning paradigm [44]
is exploited, and an ensemble spatial model that incorporates
both the simplified and detailed spatial models is output by
the model drift adaptation function. In the absence of model
drift, only the detailed spatial model that probably has a higher
model accuracy is output.

D. Network Emulation Function

It is infeasible to directly fuse the detailed and simplified
spatial models in the ensemble spatial model for resource
reservation. Instead, we can evaluate and select from the two
candidate resource reservation decisions that are respectively
obtained using the two spatial models. To realize the evalua-
tion, we introduce a network emulation function that consists
of the following two steps. /) Instance Construction: Multiple
instances of both the sensing and communication slices are
created. Each instance of a communication slice involves
deterministically distributed APs and ISAC devices, while
each instance of a sensing slice involves deterministically
distributed APs, ISAC devices, and targets. For example, the
locations of all the ISAC devices and targets in the Rols of
the ISAC devices at the end of the Mpy-th sensing frame in
the k-th reservation window, along with the locations of the
APs, are used to create one instance of the sensing slice. 2)
Decision Evaluation: A candidate resource reservation deci-
sion is implemented on each of the network instances. Then,
the service demand and capacity of each network instance are
measured to evaluate the corresponding candidate decision.
The measurement approach and the evaluation metric for a
resource reservation decision are given in Section V-B.

V. DT-BASED RESOURCE RESERVATION SCHEME

In this section, we propose a DT-based resource reservation
scheme for ISAC in the CPS.

A. Spatial Modeling-Based Decision Making

In this subsection, we first derive the formulas for estimating
the service demands and capacities in Problem (P1). Then,
we analyze Problem (P1) for transforming the problem and
deriving an efficient algorithm to obtain a candidate resource
reservation decision for the (k4 1)-th reservation window. For
brevity, we omit the subscript £ + 1 in the notation of the
parameters that are predicted by LSTM neural networks.

1) Estimation of the Communication Service Capacity:
In both the simplified and detailed spatial models, the ISAC
devices are modeled by a homogeneous PPP with the intensity
AL Given that at least one ISAC device exists, the expected
number of ISAC devices in the coverage of the AP with the
area Ay is given by E [N'] = A A4y/(1 — e=*'40). By substi-
tuting E [N'] in (2) with this expression, the communication
service capacity R in (2) can be calculated as
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2) Estimation of the Sensing Service Demand and Capacity:
According to (6), estimating the sensing demand in the
coverage of each AP, i.e., E [NV], requires (i) the probability
that a target is located in the Rol of the nearest ISAC device,
ie., P{D"VU < D}, and (ii) the expected number of targets
closest to the ISAC device, i.e., E [N, ]. First, the cumulative
distribution function (CDF) of the distance between a target
to the closest ISAC device, i.e., DbV is denoted by P{D"V <
d“Y} and approximated as follows. Given the simplified
model, we have P{D'V < @iV} = 1—exp [~ (V)" nX1],
according to the contact distance distribution of a
homogeneous PPP in [45]. Given the detailed model,
we have P{D'V < dV} = 1—exp [—(dLU)Q/(z(&U)%}
according to the distribution of the distance in any cluster of a
Thomas cluster process in [43]. Accordingly, P{D"U < D},
can be calculated. Second, the expected number of targets
closest to the ISAC device, i.e., E [N ], is approximated as
follows. Given the simplified model, E [NI \] is approximated
as AU/AL ie., the ratio of the intensity of the targets to that
of the ISAC devices, due to the identical randomness across
different ISAC devices. Given the detailed model, E [Ny | is
approximated as jiU, i.e., the expected number of targets in
the cluster formed by the ISAC device.

According to (7a), estimating the sensing capacity of
each ISAC device, i.e., Ny , requires P {D"Y < DLY.} and
E [N{;], which have been derived. The sensing capacity of

each AP, i.e., NK in (7b), is not affected by the spatial model.
3) Problem Analysis: We analyze the properties of Problem

(P1) as follows.

Proposition 2: In at least one optimal solution of Problem

(P1), the radius of the on-device sensing region, i.e., DLY , is

max’

given by
1 1
= - 1 1 XI 1
Dllngxz(,\i-(—lnP)-—v> ( C ) , (10
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which is also the maximum distance between a target and an
ISAC device for satisfying the sensing SIR requirement in (8g).

Proof: Please refer to Appendix B. |

Based on Proposition 2, we can transform constraint (8g)
equivalently into (10). To make Problem (P1) more tractable,
we relax the integer decision variables, i.e., X!, XA, X2, to
real-valued variables. Then, to efficiently solve the problem,
we derive necessary conditions for optimality as follows.
Proposition 3: The optimal solution of Problem (PI) must
satisfy the following three conditions:

1—p. T.F!
P Smin{]E o], T G } (11a)
1 sC 0
Pe _p{D"W <DLU}-E[NY];  (11b)
’ XA 7T-FA
s e (11c)
Ps Co
Proof: Please refer to Appendix C. ]

Condition (11a) specifies a minimum value of p. since the
right-hand side is independent of any decision variable in Prob-
lem (P1); (11b) gives the relation between p. and XSI since

P{DVU < Dmax} is a function of only these two decision
variables; (11c) gives the relation between X2 and F*.

4) Problem Transformation and Solution: Based on Propo-
sition 2 and Proposition 3, given the value of the decision
variable p., the optimal values of the other four decision vari-
ables can be determined in closed forms. First, the minimum
spectrum reservation for communication, X f, can be obtained
by converting the inequality constraint (8e) to an equality
constraint. Second, the optimal amount of spectrum resources
reserved for sensing by ISAC devices, X!, can be found
by solving (11b). Third, the optimal spectrum reservation
for sensing by APs, X2, can be obtained by converting the
inequality constraint (8f) to an equality constraint. Given the
optimal X2, the optimal edge computing resource reservation,
Fﬁ, can be obtained based on (11c). As a result, the original
multi-variable optimization problem can be transformed into
a single-variable problem concerning p.. The transformed
problem can be solved by a brute-force search. Then, the real
values in the decision are rounded up to integers. Given the de-
tailed spatial model or the simplified spatial model, a candidate
resource reservation decision can be respectively obtained.

B. Network Emulation-Based Decision Evaluation

Based on the network emulation function of the slice DT in
Section IV-D, a candidate resource reservation decision, i.e.,
®, can be evaluated in the following way.

1) Emulating the Communication Service Provision: Eval-
uating the average transmission rate of ISAC devices re-
quires network emulation over a long period. To reduce the
complexity, we use the expectation of the transmission rate
derived in (9). Given the location data of ISAC devices in
all the constructed network instances, the intensity of ISAC
devices is determined by MLE and used to replace the one
predicted by an LSTM network, i.e., Al in (9). Then, given
the value of p. in a resource reservation decision ®, the lower
bound of the expected achievable transmission rate, i.e., R,
is calculated as the network emulation-based estimation of the
communication service capacity. The evaluation metric chosen
here is the relative difference between the service demands
and capacities. Specifically, for the communication service,
the relative difference is denoted by A.(®) and calculated as:
Ac(®) = (IR — R|)/R, which can reflect both the resource
over-provision, where the communication capacity exceeds the
communication demand ie, R > R, and resource under-
provision, ie., R < R.

2) Emulating the Sensing Service Provision: Similarly,
given the candidate decision ®, the number of the ISAC
devices, the number of targets that can be monitored by the
ISAC devices, and the number of targets that reside in the Rols
of all the ISAC devices in the network instances are obtained
and avera%ed as the network emulation-based estimation of
E[NY], Ny, and N, respectively. The relative difference
between the service demand and the service capacity for
the sensing service is denoted by A.(®) and calculated as
Ay(®) = |NY - gﬁ}i +E [N - NP) I/NV.

3) Overall Evaluation of the Resource Reservation Deci-
sion: Given a candidate resource reservation decision P, the



average difference between the demands and capacities for the
sensing and communication services is denoted by A(®) and
calculated as A(®) = (Ac(®) + As(®P))/2, which is used for
the overall evaluation of the resource reservation decision.

C. Overall Resource Reservation Scheme

At the end of the k-th reservation window, based on the
model drift detection result, the slice DTs output a spatial
model for the (K + 1)-th reservation window. A resource
reservation scheme that can adapt to the spatial model is
introduced as follows.

e Case 1 (Model Drift Not Detected): When model drift is
not detected, i.e., H,S’ =0and H ,12 = 0, only the detailed
spatial model is output from the slice DT. The resource
reservation decision based on the detailed spatial model,
denoted by ®P, is obtained according to Section V-A,
and adopted for the (k + 1)-th reservation window.

e Case 2 (Model Drift Detected): When model drift is
detected for the detailed modeling, i.e., H,f’ =1 or
HP = 1, the slice DT will output an ensemble spatial
model consisting of both the detailed and the simplified
spatial models. In this case, the two candidate resource
reservation decisions are respectively derived as ®° and
®P. Then, the two candidate decisions are respectively
evaluated by the network emulation function according
to Section V-B, and the evaluation results A(®S) and
A(®P), reflecting the respective discrepancies between
service demands and service capacities, are obtained. The
candidate decision with the minimal demand-capacity
discrepancy is selected as the final resource reservation
decision for the (k + 1)-th reservation window.

VI. SIMULATION RESULTS

In this section, we demonstrate by simulations the perfor-
mance of the DT-based adaptive spatial modeling and resource
reservation scheme.

A. Simulation Settings and Benchmarks

The locations of the ISAC devices and targets in an indus-
trial CPS at any time instant are set as follows. The locations
of ISAC devices are generated following a homogeneous PPP,
while the locations of targets are generated in two steps. In the
first step, the number of targets in the Rol of each ISAC device
is determined by sampling from a Poisson distribution. In the
second step, targets are randomly and uniformly generated
within the Rol of each ISAC device. A thinning approach
is then used to determine whether to retain each target based
on a probability, until the predetermined number of targets for
each ISAC device is reached. Specifically, two types of ISAC
devices are considered, with devices set to type I and type II
with probabilities v and 1 — v, respectively. The probabilities
to retain a generated target for type I and type II ISAC devices
are given by D%V /d and 1— D%Y /d, respectively, where DY
is the distance between the target and the ISAC device, and
d is the radius of the Rol. The other main simulation settings
are given in Table I.

To generate the location data across reservation windows,
the parameters of the homogeneous PPP and the Poisson
distribution are changed based on the absolute values of cosine
functions with the angular frequency 7 /8. Each simulation run
includes 400 consecutive reservation windows, and for each
simulation setting, we conduct 5 simulation runs and evaluate
the average performances. The following three performance
metrics are adopted: ) Actual Service Satisfaction Ratio:
This metric represents the average satisfaction ratios for the
sensing and communication services as observed at the end
of each reservation window. Each service’s satisfaction ratio
is calculated as the minimum between 1 and the ratio of the
service capacity to the service demand; 2) Overall Resource
Consumption: This metric represents the overall cost of reserv-
ing the spectrum resources and edge computing resources for
the sensing and communication services, as defined in (8a); 3)
Modeling Error: This metric represents the average prediction
error of the parameters in a spatial model. A sliding average
approach is used with the width of 20 reservation windows.

TABLE I: System parameters in simulation

Parameter Value
Beamwidth of ISAC devices for sensing, ¢ /6
Bandwidth of a communication subcarrier, Bc,o 0.015 MHz
Transmit power for sensing, Ps 20 dBm
Bandwidth of a sensing band, Bs o 1 MHz
Average radar cross section, & 0.5 m?
Side length of each AP’s coverage, rg 500 m
Duration of a time slot, T 1 ms
Number of time slots in a sensing frame, T' 1000
Number of sensing frames in a reservation window, M 500
Location data collection period in sensing frames, Mo 10
Number of APs in the cluster, L 3

CPU cycles for sensing one target, Cp 1 x 108 cycles

CPU frequency of each ISAC device, F 2 GHz
SIR requirement for sensing, s 20 dB
Threshold for SIR requirement satisfaction, P 0.95
Communication throughput requirement, R 1 kb/slot
Sensing frequency requirement for each target, ps 0.05
Radius of the Rol for each ISAC device, D 10 m

Cost of reserving a unit of spectrum resources, w 1
Cost of reserving a unit of edge computing resources, & 1x 103
Parameters in model drift detection, { K1, K2, K3,61} {5, 3,13,0.2}

We compare our proposed DT-based adaptive modeling with

the following benchmarks:

o Simplified Modeling (Ideal Case): Use the simplified
spatial modeling with perfect parameter prediction.

« Simplified Modeling: Use the simplified spatial model-
ing with LSTM neural networks to predict model param-
eters, while the proposed model drift detection and the
model update approaches are not implemented.

o Detailed Modeling (Ideal Case): Use the detailed spatial
modeling with perfect parameter prediction.

o Detailed Modeling: Use the detailed spatial modeling
with LSTM neural networks to predict model parameters,
while the proposed model drift detection and model
update approaches are not implemented.

B. Effectiveness of DT-based Adaptive Modeling

In this subsection, we demonstrate the performance of the
DT-based adaptive spatial modeling and resource reservation
scheme. In each simulation, the value of v is set to 0.1 and 0.7
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before and after the 201-st reservation window. The average
number of targets in the Rol of each ISAC device is set to
be 5.5 and that of the ISAC devices varies from 15 to 30
per square kilometre. In Fig. 7, we show the actual service
satisfaction ratio, and in Fig. 8, we show the overall resource
consumption.

First, in the two ideal cases where parameter predictions
are perfect, we compare the performances of the detailed
modeling and simplified modeling. It can be observed from
Fig. 7 that the use of a single model in the ideal cases result
in similarly high service satisfaction ratios. From Fig. 8, it can
be observed that the use of the detailed modeling in the ideal
case results in the resource reservation decisions that consume
less resources than the use of simplified modeling in the ideal
case. This is because, even though the simplified modeling
can accurately estimate the expected number of targets in the
whole Rol of each ISAC device, it underestimates that in
the on-device sensing region, which is an inner circle of the
Rol. Consequently, the demand for sensing services can be
accurately estimated, whereas the sensing capacity of ISAC
devices is under-estimated.

Second, in the non-ideal cases where model parameters
are predicted by LSTM neural networks, we compare the
performances of the simplified modeling, detailed modeling,
and the DT-based adaptive modeling. Unlike in the ideal
cases where the detailed modeling outperforms the simplified
modeling, in the non-ideal cases, it can be observed from
Fig. 7 that, using the detailed modeling scheme results in
a much lower actual service satisfaction ratio than using the
simplified modeling. This is because, as shown in Fig. 5, after
the value of v changes in the 201-st reservation window, the
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Fig. 9: Modeling error across reservation windows.

detailed modeling exhibits model drift, while the simplified
modeling does not. In addition, it can be observed from Fig. 7
that using the DT-based adaptive spatial modeling results in
nearly the same service satisfaction ratio as the simplified
modeling. In addition, it can be observed from Fig. 8 that, the
use of the DT-based adaptive spatial modeling results in lower
resource consumption compared with the simplified modeling.

From the observations in the non-ideal cases, the DT-based
adaptive modeling scheme achieves the best performance. In
the following subsections, we illustrate the benefits of the
model update and model ensemble approaches, respectively,
where the average number of targets in the Rol of each ISAC
device is 5.5 and that of the ISAC devices is 15.

C. Effectiveness of Model Update

In Fig. 9, we show the modeling error across reservation
windows. From Fig. 9, it can be observed that, after the value
of v changes in the 201-st reservation window, the modeling
error of the detailed modeling drastically increases, while that
of the simplified modeling does not. In contrast, with model
drift detection and model update by retraining the LSTM
neural networks, the modeling error of the detailed modeling
quickly falls down after the increase. This observation demon-
strates that the model update approach can enable the detailed
modeling to address model drift and thus become suitable for
resource reservation in the presence of model drift.

D. Effectiveness of Model Ensemble

In this subsection, we demonstrate the performance with
the model drift of the detailed modeling occurring at different
intervals. The interval is referred to as model drift interval
measured in the numbers of reservation windows. To simulate
an occurrence of the model drift, the value of v alters between
0.1 and 0.7.

First, in Fig. 10, we show the per-window performances
from the 240-th to the 270-th reservation window, where
the model drift interval is 120 reservation windows. In
Fig. 10a, we show the model drift detection result. From
Fig. 10a, it can be observed that the model drift, occurring
in the 241-st reservation window, is successfully detected
at the 244-th reservation window. In Fig. 10b, we show
the actual service satisfaction ratio. From the figure, it can
be observed that, after the model drift occurs, the actual
service satisfaction ratio, by using the detailed modeling
with the model update, first decreases, and then increases. In
addition, it can be observed that by using the model ensemble
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approach in the DT-based adaptive modeling, a higher service
satisfaction ratio can be achieved in multiple reservation
windows. This is because, by using the model ensemble
approach, when model drift is detected, both the detailed
and simplified spatial models are output from the slice DT
for resource reservation, and the network emulation function
in the slice DT evaluates the resource reservation decisions
derived from the two spatial models, and selects the better
decision. Similarly, from Fig. 10c, it can be observed that, the
model ensemble approach demonstrates its effectiveness by
preventing resource over-provision in the 244-th and 246-th
reservation windows, while avoiding under-provision in the
remaining windows between the 244-th and 254-th.

Second, we show the average performance across reserva-
tion windows when the model drift interval takes different
values. In Fig. 11 and Fig. 12, we show the actual service
satisfaction ratio and the overall resource consumption, re-
spectively. From the two figures, it can be observed that
compared with always using the detailed modeling, using the
model ensemble approach in the DT-based adaptive modeling
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Fig. 12: Overall resource consumption versus model drift interval.

improves the actual service satisfaction ratio and decreases
the overall resource consumption. In addition, it can also be
observed from the two figures that, with a longer model drift
interval, the advantage of DT-based adaptive modeling, in
terms of improving the actual service satisfaction and reducing
the resource consumption, diminishes. This is because, a
longer model drift interval reduces the frequency of model
drift and, consequently, the time percentage when the model
ensemble approach is applied.

The observations in this subsection reveal that it is not
always beneficial to use a detailed spatial modeling for re-
source management, especially when characterizing the de-
tailed spatial information can experience frequent model drifts.
Instead, with our proposed DT-based adaptive spatial model-
ing, detailed spatial information can be properly exploited for
effective resource management.

VII. CONCLUSION

In this paper, we have proposed a DT-based proactive
resource management scheme for ISAC in industrial CPSs.
Our proposed DT design enables the adaptive update and
ensemble of multiple point process-based spatial models for
robust spatial modeling in non-stationary industrial environ-
ments. Moreover, a network emulation function has been
developed in the DTs to accurately evaluate and flexibly select
from resource reservation decisions given different modeling
approaches. In addition to the network-level modeling, our
proposed scheme can be applied to model the service demands
of individual users for proactive resource management. For
future work, we will investigate the establishment and update
of user DTs to model individual users’ differentiated and
dynamic attention patterns towards various targets, enabling
user-centric service provision in industrial CPSs.

APPENDIX A
PROOF OF PROPOSITION 1

If the device is scheduled for communication in the slot,
we have R = X gRo; and otherwise, R = 0. As a result, the
expected transmission rate for the ISAC device is

Eni [R] = pe - Ent [Eng [X¢Ro|N']] (12a)
Ro X%
>0 Ent | ——00e
A
> pe- o X, (12¢)

1+ (E[NT] - 1)pc’



where (12b) holds since, based on Jensen’s inequality, we have
XA XA
Ew: [ININT ~ 1+ (NT = 1)p.’

En; [XeINT] > (13)

and (12c) holds also due to the Jensen’s inequality.

APPENDIX B
PROOF OF PROPOSITION 2

Under both the simplified modeling and the detailed mod-
eling, the targets are modeled to be uniformly distributed
in various directions around each ISAC device. As a result,
the directions of the beams formed by ISAC devices in the
sensing mode are independently and uniformly distributed in
[0, 27) [9], [20]. In addition, since ISAC devices independently
access each spectrum band for the sensing with the probability
(1 — pc)/ XL, based on the property of PPPs, the ISAC
devices that access the same spectrum band for sensing form a
thinned homogeneous PPP with the intensity A!- (1 — p.)/ X\
According to [9, Proposition 1], the CDF of the strongest
interference I for the ISAC device is :
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Since 5 = P./I;, the probability that - is higher than the
threshold ~s is

~ P,
]P){’YS Z 75} = IED{IS S 7?}7

S

15)

which should be greater than Pto satisfy the sensing quality
requirement. Therefore, we have
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The power received sensing signals, i.e., P, is negatively
correlated with the distance between the ISAC device and
the target, i.e., D. As a result, to satisfy (16), there exists
a maximum value of the distance. By substituting P, in (16)
with its calculation formula, the maximum distance can be
calculated as the right-hand side of (10).

If there exist more than one optimal solutions for Problem
(P1), consider ® = {p., X2, XI, X2 FA DLU } as one of
the optimal solutions. According to the proof in the first step,
DLU should be equal to or smaller than the term on the right-

hand side of (10) to make constraint (8g) in Problem (P1)
satisfied. As a result, we consider the following two cases.

e Case 1: DLY is equal to the term on the right-hand
side of (10). In this case, the considered optimal solution
makes (10) satisfied.

e Case 2: DLY is smaller than the term on the right-

hand side of (10). In this case, we can increase DLY to
equal the term on the right-hand side of (10). which does
not impact the overall resource consumption and ensures
that all constraints in Problem (P1) remain satisfied.
Accordingly, the solution after the increase of DLU is

still optimal and makes (10) satisfied.

If there exists one unique optimal solution for Problem (P1),

for the optimal solution, DLY must be equal to the term on

(16)

P0-p) o (BAL) o).
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the right-hand side of (10), i.e., making (10) satisfied. This is
because, otherwise, according to the discussion in Case 2, we
can find another optimal solution for Problem (P1).

APPENDIX C
PROOF OF PROPOSITION 3

We respectively prove the three necessary conditions in (11).
First, defined in (7a), an upper bound of the expected
number of targets that can be sensed by the ISAC device is

Ps Co

a
As a result, if (1 — p.)/ps is greater than E[N{}] or 7T -
F!/Cy, we can find a greater p. which decreases the amount
of required spectrum resources, i.e., X, while keeping all
the other parts of Problem (P1), including N}j, unaffected.
Therefore, for the optimal solutions to Problem (P1), p. should
satisfy the condition in (11a):

J— . I
N, = min {IP {D"U < DEU V. E[NY], 1= pe il F}
)

! ;\pc < min {IE [Nllfl] ,

Second, with the necessary condition, (17) reduces to

I
T Fe}‘ (18)

Co

_ 1—pc

N{ = min {IP’{DI’U <DLUY-E[NY], ﬁp } (19)
According to the expression derived in Section V-A,
P iDI’U < DLY } increases with DLY which increases with
X and decreases with p., and E [ N7, ] is not affected by any
decision variables. As a result, first, if P{D"Y < DLU
E [NF,] > (1 — pc)/ps, we can find a smaller X! while
keeping all the other parts of Problem (P1) including NP unaf-

fected. Second, if P { D"V < DLU }-E [NF] < (1—pc)/ps,
we can find a greater p. which (i) increases NP such as to
decrease the amount of spectrum and computing resources
required for target tracking by the APs; (ii) decreases the
amount of required spectrum resources, i.e., X f. To conclude,
for the optimal solutions to (P2), the condition in (11b) should

be satisfied:

Sl _p (DWW < DI} ENY]. QO

max
Ps

Third, as for the necessary condition (11c), similarly, if it is
violated, we can find a smaller amount of required spectrum
resources, i.e., XSA, or computing resources, i.e., FeA without
affecting all the other parts of Problem (P1).

REFERENCES

[1] S. Hu, J. Gao, X. Huang, C. Zhou, M. He, and X. Shen, “Model drift-
adaptive resource reservation in ISAC networks: A digital twin-based
approach,” in Proc. IEEE/CIC Int. Conf. Commun. China (ICCC), 2024,
to be published.

[2] M. Korki, J. Jin, and Y.-C. Tian, “Real-time cyber-physical systems:
State-of-the-art and future trends,” in Handbook of Real-Time Comput-
ing. Springer, 2022, pp. 509-540.

[3] J. Jin, K. Yu, J. Kua, N. Zhang, Z. Pang, and Q.-L. Han, “Cloud-
fog automation: Vision, enabling technologies, and future research
directions,” IEEE Trans. Ind. Informat., vol. 20, no. 2, pp. 1039-1054,
2024.



[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

G. Zhu, Z. Lyu, X. Jiao, P. Liu, M. Chen, J. Xu, S. Cui, and P. Zhang,
“Pushing Al to wireless network edge: An overview on integrated
sensing, communication, and computation towards 6G,” Sci. China
Technol. Sci., vol. 66, no. 3, p. 130301, 2023.

Y. Cui, H. Ding, L. Zhao, and J. An, “Integrated sensing and communi-
cation: A network level perspective,” IEEE Wireless Commun., vol. 31,
no. 1, pp. 103-109, 2024.

Y. Liu, D. Lan, Z. Pang, M. Karlsson, and S. Gong, ‘“Performance eval-
uation of containerization in edge-cloud computing stacks for industrial
applications: A client perspective,” IEEE open J. Ind. Electron., vol. 2,
pp. 153-168, 2021.

Y. Zeng, J. Chen, J. Xu, D. Wu, X. Xu, S. Jin, X. Gao, D. Gesbert, S. Cui,
and R. Zhang, “A tutorial on environment-aware communications via
channel knowledge map for 6G,” IEEE Commun. Surveys Tuts., vol. 26,
no. 3, pp. 1478-1519, 2024.

X. Shen, J. Gao, W. Wu, K. Lyu, M. Li, W. Zhuang, X. Li, and J. Rao,
“Al-assisted network-slicing based next-generation wireless networks,”
IEEE Open J. Veh. Technol., vol. 1, pp. 45-66, 2020.

A. Munari, L. Simié, and M. Petrova, “Stochastic geometry interference
analysis of radar network performance,” IEEE Commun. Lett., vol. 22,
no. 11, pp. 2362-2365, 2018.

Y. Wang, Q. Zhang, Z. Wei, L. Kui, F. Liu, and Z. Feng, “Performance
analysis of uncoordinated interference mitigation for automotive radar,”
IEEE Trans. Veh. Technol., vol. 72, no. 4, pp. 42224235, 2023.

W. Shi, J. Li, P. Yang, Q. Ye, W. Zhuang, X. Shen, and X. Li, “Two-level
soft RAN slicing for customized services in 5G-and-beyond wireless
communications,” IEEE Trans. Ind. Informat., vol. 18, no. 6, pp. 4169—
4179, 2022.

Q. Wang, Z. Pang, W. Liang, J. Zhang, K. Wang, and Y. Yang,
“Spatiotemporal gradient-based physical-layer authentication enhanced
by CSI-to-image transformation for industrial mobile devices,” IEEE
Trans. Industr. Inform., vol. 20, no. 3, pp. 42364245, 2024.

J. A. Marvel and R. Norcross, “Implementing speed and separation
monitoring in collaborative robot workcells,” Robot. Comput. Integr.
Manuf., vol. 44, pp. 144-155, 2017.

H. Chauhan, A. Pakbaz, Y. Jang, and I. Jeong, “Analyzing trust dynamics
in human-robot collaboration through psychophysiological responses in
an immersive virtual construction environment,” J. Comput. Civ. Eng.,
vol. 38, no. 4, pp. 461-469, 2024.

H. Zhang, Y. Zhang, X. Liu, C. Ren, H. Li, and C. Sun, “Time allocation
approaches for a perceptive mobile network using integration of sensing
and communication,” IEEE Trans. Wireless Commun., vol. 23, no. 2, pp.
1158-1169, 2024.

A. Salem, K. Meng, C. Masouros, F. Liu, and D. Lopez-Perez, “Rethink-
ing dense cells for integrated sensing and communications: A stochastic
geometric view,” IEEE Open J. Commun. Soc., vol. 5, pp. 2226-2239,
2024.

Z. Sun, S. Yan, N. Jiang, J. Zhou, and M. Peng, “Performance analysis of
integrated sensing and communication networks with blockage effects,”
arXiv preprint arXiv:2403.18621, 2024.

K. Meng, C. Masouros, G. Chen, and F. Liu, “Network-level integrated
sensing and communication: Interference management and bs coordina-
tion using stochastic geometry,” arXiv preprint arXiv:2311.09052, 2023.
X. Gan, C. Huang, Z. Yang, X. Chen, J. He, Z. Zhang, C. Yuen,
Y. L. Guan, and M. Debbah, “Coverage and rate analysis for integrated
sensing and communication networks,” IEEE J. Sel. Areas Commun.,
pp. 1-15, 2024, to be published, doi:10.1109/JSAC.2024.3413989.

M. Mei, M. Yao, Q. Yang, J. Wang, and R. R. Rao, “Stochastic
network calculus analysis of spatial-temporal integrated sensing and
communication networks,” IEEE Trans. Veh. Technol., pp. 1-5, 2024,
to be published, doi:10.1109/TVT.2024.3357708.

D. M. Manias, A. Chouman, and A. Shami, “Model drift in dynamic
networks,” IEEE Commun. Mag., vol. 61, no. 10, pp. 78-84, 2023.

X. Shen, J. Gao, W. Wu, M. Li, C. Zhou, and W. Zhuang, “Holistic
network virtualization and pervasive network intelligence for 6G,” IEEE
Commun. Surveys Tuts., vol. 24, no. 1, pp. 1-30, Firstquarter 2022.

C. Zhou, J. Gao, M. Li, X. Shen, and W. Zhuang, “Digital twin-
empowered network planning for multi-tier computing,” J. Commun.
Inf. Netw., vol. 7, no. 3, pp. 221-238, 2022.

X. Huang, W. Wu, S. Hu, M. Li, C. Zhou, and X. Shen, “Digital
twin based user-centric resource management for multicast short video
streaming,” IEEE J. Sel. Topics Signal Process., vol. 18, no. 1, pp. 50—
65, 2024.

J. Gong, Q. Yu, T. Li, H. Liu, J. Zhang, H. Fan, D. Jin, and Y. Li,
“Scalable digital twin system for mobile networks with generative Al
in Proc. 21st Annu. Int. Conf. Mobile Syst. Appl. Services, 2023, pp.
610-611.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

13

S. Hu, M. Li, J. Gao, C. Zhou, and X. Shen, “Adaptive device-
edge collaboration on DNN inference in AloT: A digital twin-assisted
approach,” IEEE Internet Things J., vol. 11, no. 7, pp. 12893-12908,
2024.

F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi,
“Integrated sensing and communications: Toward dual-functional wire-
less networks for 6G and beyond,” IEEE J. Sel. Areas Commun., vol. 40,
no. 6, pp. 1728-1767, 2022.

N. C. Luong, X. Lu, D. T. Hoang, D. Niyato, and D. I. Kim, “Radio
resource management in joint radar and communication: A comprehen-
sive survey,” IEEE Commun. Surveys Tuts., vol. 23, no. 2, pp. 780-814,
2021.

Z. Xie, R. Li, Z. Jiang, J. Zhu, X. She, and P. Chen, “Optimal scheduling
policy for time-division joint radar and communication systems: Cross-
layer design and sensing for free,” IEEE Internet Things J., vol. 10,
no. 23, pp. 20746-20760, 2023.

H. Ju, Y. Long, X. Fang, Y. Fang, and R. He, “Adaptive scheduling for
joint communication and radar detection: Tradeoff among throughput,
delay, and detection performance,” IEEE Trans. Veh. Technol., vol. 71,
no. 1, pp. 670-680, 2022.

J. Chen, X. Wang, and Y.-C. Liang, “Impact of channel aging on
dual-function radar-communication systems: Performance analysis and
resource allocation,” IEEE Trans. Commun., vol. 71, no. 8, pp. 4972—
4987, 2023.

F. Dong, F. Liu, Y. Cui, W. Wang, K. Han, and Z. Wang, “Sensing as
a service in 6G perceptive networks: A unified framework for ISAC
resource allocation,” IEEE Trans. Wireless Commun., vol. 22, no. 5, pp.
3522-3536, 2023.

Z. He, W. Xu, H. Shen, D. W. K. Ng, Y. C. Eldar, and X. You,
“Full-duplex communication for ISAC: Joint beamforming and power
optimization,” IEEE J. Sel. Areas Commun, vol. 41, no. 9, pp. 2920—
2936, 2023.

Y. Hmamouche, M. Benjillali, S. Saoudi, H. Yanikomeroglu, and M. D.
Renzo, “New trends in stochastic geometry for wireless networks: A
tutorial and survey,” Proc. IEEE, vol. 109, no. 7, pp. 1200-1252, 2021.
M. Li, J. Gao, C. Zhou, L. Zhao, and X. Shen, “Digital twin-
empowered resource allocation for on-demand collaborative sens-
ing,” IEEE Internet Things J., pp. 1-17, 2024, to be published,
doi:10.1109/J10T.2024.3446801.

P. Jia and X. Wang, “A new virtual network topology-based digital twin
for spatial-temporal load-balanced user association in 6G hetnets,” [EEE
J. Sel. Areas Commun., vol. 41, no. 10, pp. 3080-3094, 2023.

H. Wang, Y. Wu, G. Min, and W. Miao, “A graph neural network-
based digital twin for network slicing management,” IEEE Trans. Ind.
Informat., vol. 18, no. 2, pp. 1367-1376, Feb. 2022.

Y. Cui, W. Yuan, Z. Zhang, J. Mu, and X. Li, “On the physical layer
of digital twin: An integrated sensing and communications perspective,”
IEEE J. Sel. Areas Commun., vol. 41, no. 11, pp. 3474-3490, 2023.
H. Chen, T. D. Todd, D. Zhao, and G. Karakostas, “Digital twin model
selection for feature accuracy,” IEEE Internet Things J., vol. 11, no. 7,
pp. 11415-11426, 2024.

W. Yi, Y. Yuan, R. Hoseinnezhad, and L. Kong, “Resource scheduling
for distributed multi-target tracking in netted colocated MIMO radar
systems,” IEEE Trans. Signal Process., vol. 68, pp. 1602-1617, 2020.
G. Ghatak, R. Koirala, A. De Domenico, B. Denis, D. Dardari, B. Uguen,
and M. Coupechoux, “Beamwidth optimization and resource partitioning
scheme for localization assisted mm-wave communication,” IEEE Trans.
Commun., vol. 69, no. 2, pp. 1358-1374, 2021.

J. A. Gonzélez, F. J. Rodriguez-Cortés, O. Cronie, and J. Mateu, “Spatio-
temporal point process statistics: a review,” Spatial Statist., vol. 18, pp.
505-544, 2016.

P. D. Mankar, G. Das, and S. S. Pathak, “Modeling and coverage analysis
of BS-centric clustered users in a random wireless network,” IEEE
Wireless Commun. Lett., vol. 5, no. 2, pp. 208-211, 2016.

X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble
learning,” Front. Comput. Sci., vol. 14, pp. 241-258, 2020.

X. Lu, M. Salehi, M. Haenggi, E. Hossain, and H. Jiang, “Stochastic
geometry analysis of spatial-temporal performance in wireless networks:
A tutorial,” IEEE Commun. Surveys Tuts., vol. 23, no. 4, pp. 2753-2801,
2021.



